目的;这项研究的目的是通过将机器学习应用于多模式MRI特征,将神经胶质肿瘤分为II,III和IV类别,与体积分析相比。方法;我们回顾性地研究了57例在3T MRI上获取的T2加权,T2加权,Flair图像和ADC MAP的胶质瘤患者。使用ITK-SNAP开源工具的半小局分割,将肿瘤分割为增强和非增强部分,肿瘤坏死,囊肿和水肿。我们测量了总肿瘤量,增强的非肿瘤,水肿,坏死体积以及与总肿瘤量的比率。对培训载体机(SVM)分类器和人工神经网络(ANN)进行了标记的数据,旨在回答感兴趣的问题。通过ROC分析计算预测的特异性,灵敏度和AUC。使用Kruskall Wallis评估了组之间连续度量的差异,并进行了事后DUNN校正以进行多次比较。结果;当我们比较组之间的体积比时,IV级和II-III级神经胶质肿瘤之间的统计学显着差异。 IV级神经胶质肿瘤的水肿和肿瘤坏死比率高于II和III级。体积比分析无法成功区分II和III级肿瘤。但是,SVM和ANN以高达98%和96%的精度正确分类了每个组。结论;在临床环境中,可以将机器学习方法应用于MRI特征,以无创,更容易地对脑肿瘤进行分类。
translated by 谷歌翻译
尽管结果令人印象深刻,但深度学习的技术还引起了经常在数据中心进行的培训程序引起的严重隐私和环境问题。作为回应,已经出现了集中培训的替代方案,例如联邦学习(FL)。也许出乎意料的是,FL开始在全球范围内部署,这些公司必须遵守源自倡导隐私保护的政府和社会团体的新法律要求和政策。 \ textit {但是,与FL有关的潜在环境影响仍然不清楚和未开发。本文提供了有关佛罗里达碳足迹的首次系统研究。然后,我们将FL的碳足迹与传统的集中学习进行了比较。我们的发现表明,根据配置,FL可以比集中的机器学习高达两个数量级。但是,在某些情况下,由于嵌入式设备的能源消耗减少,它可以与集中学习相提并论。我们使用FL进行了不同类型的数据集,设置和各种深度学习模型的广泛实验。最后,我们强调并将报告的结果与FL的未来挑战和趋势联系起来,以减少其环境影响,包括算法效率,硬件能力和更强的行业透明度。
translated by 谷歌翻译
联合学习(FL)作为边缘设备的有希望的技术,以协作学习共享预测模型,同时保持其训练数据,从而解耦了从需要存储云中的数据的机器学习的能力。然而,在规模和系统异质性方面,FL难以现实地实现。虽然有许多用于模拟FL算法的研究框架,但它们不支持在异构边缘设备上进行可扩展的流程。在本文中,我们呈现花 - 一种全面的FL框架,通过提供新的设施来执行大规模的FL实验并考虑丰富的异构流程来区分现有平台。我们的实验表明花卉可以仅使用一对高端GPU在客户尺寸下进行FL实验。然后,研究人员可以将实验无缝地迁移到真实设备中以检查设计空间的其他部分。我们认为花卉为社区提供了一个批判性的新工具,用于研究和发展。
translated by 谷歌翻译